A QoS support technique for easily minimizing delay in multihop wireless networks is proposed. Using a priority queue operation that reduces delays overall, the proposed technique, Reduced Congestion Queuing (RCQ), solves problems peculiar to multihops. By adding RCQ to a multihop system, base station or access point density and cost can be more effectively curtailed than by simply applying multihops to a cellular network or wireless LAN because RCQ expands the multihop service area. Due to its simplicity, the proposed technique can be used in a wide range of applications, including VoIP.
A useful optimization problem to help solve various base station layout problems in multihop wireless networks is formulated. By solving the proposed generalized formula, the relation between the permissible largest number of hops and the minimum base station density necessary to cover an entire service area while guaranteeing a specified QoS is easily calculated. Our formula is extendable to other allocation problems by replacing parameters. The energy-cost transformation and scope of the multihop effect are also presented.
In this letter, the influence of the downlink average ratio of the other cell interference to other-user interference in the serving cell (DARI) on the distributed repeater system (DRS) performance is analyzed. It is found that the improvement of DARI depends on a propagation path loss environment. Applying the computed DARI to a 3-RS DRS cell, as high as 13.9% capacity enhancement was obtained when the path loss exponent is 4.5. In addition, by using the power allocation equation, it is expected that a hexagonal DRS cell without coverage holes or excessive coverage overlap can be realized.
Kazunori AKABANE Hiroyuki SHIBA Munehiro MATSUI Kazuhiro UEHARA
Various wireless systems are being developed to meet users' needs, and the rapid increase in frequency demand that accompanies the increasing popularity of wireless services means that more effective use of frequency resources is urgently needed. However, existing base stations are making no effort to use frequency resources effectively, and cooperation among wireless system base stations is needed to use frequency resources more effectively. Base stations can cooperate more efficiently if they are able to use multiple channels of many wireless systems simultaneously. We propose an autonomous adaptive base station (AABS) that can switch among various wireless systems the way software defined radio (SDR) base stations do. AABS can autonomously select and use the most suitable wireless system on the basis of user traffic and its hardware resources. Moreover, frequency resources are used effectively because AABS prevents unnecessary radio wave transmission when the number of users in the wireless systems decreases. AABS is also suitable for "multi-link communication" because it can use multiple channels of multiple wireless systems simultaneously. We developed AABS prototype and evaluated its performance. Our experimental and computer simulation results show the performance of AABS and its efficiency.
Tetsuro UEDA Kazunori TAKEUCHI Shoji KANEKO Shingo NOMURA Keizo SUGIYAMA
CR (Cognitive Radio) is a technology that can realize more intensive and efficient spectrum use through spatial and temporal utilization. In the context of mesh networks where each base station consists of heterogeneous multi-radio interfaces, packet switch in L2/L3 of each base station selects each radio interface and channel adaptively in order to take full advantage of all multiple heterogeneous interfaces. At first, this paper examines the achievable performance of the new packet switch schemes in mesh topology. Secondly, we investigate the potentiality of dynamic base station relocation approach in order to cope with the change of terminal traffic distribution, and show the impact of packet switch policy on dynamic base station relocation.
An optimization model with maximum ratio combining (MRC) diversity soft handover is proposed for WCDMA base station location planning with heuristic algorithm, which can calculate the influence of MRC diversity soft handover directly in the process of base station location planning. Experimental results show that the proposed model can get better capacity and coverage performance in the planning results than the traditional optimization model without MRC diversity.
Jianqing WANG Masayuki KOMATSU Osamu FUJIWARA Shinji UEBAYASHI
In this study we have employed an effective technique for dosimetric analyses of base station antennas in an underground environment. The technique combines a ray-tracing method and the finite-difference time-domain (FDTD) method to calculate the specific absorption rate (SAR) in the human body. The ray-tracing method was applied to evaluate the incident fields in relation to the exposed subject in a three-dimensional space, while the FDTD method was used to calculate the detailed SAR distributions in the human body. A scenario under an underground passage with the installation of a top-loaded monopole antenna was analyzed to investigate the relationship between the actual antenna exposure and a plane-wave exposure. The results show that the plane-wave exposure overestimated the whole-body average SAR in most cases, although this was not always true for peak SAR. The finding implies not only the usefulness of the present uniform-exposure-based reference level for the whole-body average SAR evaluation but also the necessity of modeling actual underground environment for high-precision local peak SAR evaluation.
Toshihide KIKKAWA Kazukiyo JOSHIN
Highly reliable GaN high electron mobility transistors (HEMTs) are demonstrated for 3G-wireless base station applications. A state-of-the-art 250-W AlGaN/GaN-HEMTs push-pull transmitter amplifier operated at a drain bias voltage of 50 V is addressed with high efficiency under W-CDMA signals. The amplifier, combined with a digital pre-distortion (DPD) system, also achieved an adjacent channel leakage power ratio (ACLR) of less than -50 dBc for 4-carrier W-CDMA signals. Memory effect and temperature characteristics are also discussed. A stable operation including gate leakage current under RF stress testing for 1000 h is demonstrated at a drain bias voltage of 60 V. AlGaN/GaN HEMTs on an n-type doped 3-inch SiC substrate is introduced towards low cost manufacturing for the first time.
A novel mobile assignment method based on transmit power and cell load is proposed for WCDMA base station location planning. Experimental results show that, compared with the currently widely used mobile assignment method based on link attenuation, the proposed mobile assignment method is more reasonable and unnecessary base stations are reduced in the planning results.
Yi LU Bharat BHARGAVA Weichao WANG Yuhui ZHONG Xiaoxin WU
Security, flexibility, and scalability are critical to the success of wireless communications. Wireless networks with movable base stations combine the advantages of mobile ad hoc networks and wireless LAN to achieve these goals. Hierarchical mobile wireless network (HMWN) is proposed for supporting movable base stations. In such a system, mobile hosts are organized into hierarchical groups. The group agents serve as a distributed trust entity. A secure packet forwarding algorithm and an authentication and key exchange protocol are developed to protect the network infrastructure. A roaming support mechanism and the associated mutual authentication protocol are proposed to secure the foreign group and the mobile host when it roams within the network. The computation overhead of secure packet forwarding and roaming support algorithms is studied via experiments. The results demonstrate that these two security mechanisms only require, respectively, less than 2% and 0.2% to 5% CPU time in a low-end 700 MHz PC.
Koichiro YAMAGUCHI Yuji ABURAKAWA Yuji NAKAYAMA Toru OTSU
Frequency channel allocation according to the interference among links is important in autonomous distributed control wireless base station networks from the viewpoint of efficient frequency utilization. It is generally difficult to estimate the interference imposed on other links in a distributed control scheme. This paper proposes a novel frequency channel allocation scheme employing distributed control utilizing broadcast signals to estimate the intensities and frequencies of the interference to other links. The frequency channel, which can be allocated to a link from the viewpoint of the degree of the interference imposed on other links, can be found by receiving broadcast signals. Simulation results show that the proposed scheme efficiently allocates frequency channels to each link to avoid the interference.
Joo-Hyun DO Young-Yong LEE Hyung-Jin CHOI
In this paper, we propose a modified CP-AFC (Cross-Product Automatic Frequency Control) algorithm to enhance coherent signal detection for WCDMA reverse link receiver. We introduce a moving average filter at the FDD input to decrease the noise effect by increasing the number of cross-products, since pilot symbol in WCDMA is not transmitted continuously. We also add normalization algorithm to overcome the conventional CP-FDD's sensitivity to the variance of input signal amplitude and to increase the linear range of S-curve. For rapid frequency acquisition and tracking, we adopt a multi-stage tracking mode. We applied the proposed algorithm in the implementation of WCDMA base station modem successfully.
Shin-ichi YAMAMOTO Jiro HIROKAWA Makoto ANDO
The authors proposed a switching beam slot array antenna with a 4-way Butler matrix. All are integrated in one substrate with post-wall waveguide techniques. The planar Butler matrix is realized by using short slot directional couplers (cross coupler). Experiments in 26GHz band confirmed the key operation of this antenna; almost identical four beams are switched to cover the total of horizontal 90-degree sector with equal angular spacing.
Byoung-Seong PARK Jong-Gwan YOOK Han-Kyu PARK
In this letter, base station placement is automatically determined from pre-defined candidate sites using a genetic approach, and the transmit power is obtained taking the interference situation into account in cases of interference-dominant systems. In order to apply a genetic algorithm to the base station placement problem, a real-valued representation scheme is proposed. Corresponding operators such as crossover and mutation are also introduced. The proposed algorithm is applied to an inhomogeneous traffic density environment, where a base station's coverage may be limited by offered traffic loads. An objective function is designed for performing the cell planning in a coverage- and cost-effective manner.
Jian-Jou LAI Yu-Wen LAI Shie-Jue LEE
Randomly addressed polling was proposed as a multiple access control protocol for wireless local area networks (LANs). However, the protocol has difficulties in supporting real-time services such as voice transmission. We propose a reservation scheme and make it possible to support real-time services. The scheme is described in detail. Efficiency and average access delay are analyzed.
Keizo CHO Kentaro NISHIMORI Toshikazu HORI
The adaptive base station antenna is an attractive candidate for establishing high-speed and highly-reliable wireless communication systems. From a commercial viewpoint, since the cost and complexity of adaptive antennas depend on the number of elements, optimizing the antenna configuration while considering the propagation environment is necessary to reduce the number of elements. This paper first presents the Angle of Arrival (AOA) characteristics of delayed waves in a street microcell environment, typically used in urban microcell systems. Then the antenna configuration and antenna spacing suitable for the street microcell are investigated utilizing bit error rate (BER) performance simulations using practical delay profiles and AOAs. The effectiveness of bidirectional elements with respect to the BER performance is also investigated. As the results, we found that broadside array with the spacing of 2.5 wavelengths is suitable for adaptive base station antennas for high data-rate wireless systems placed in a street microcell environment. We also found that bidirectional elements alleviate the BER degradation due to the grating lobe of the antenna with wide element spacing without increasing the antenna size.
Kenichi HORIGUCHI Masatoshi NAKAYAMA Yuji SAKAI Kazuyuki TOTANI Haruyasu SENDA Yukio IKEDA Tadashi TAKAGI Osami ISHIDA
A high efficiency feedforward power amplifier (FFPA) with a series diode linearizer for cellular base stations is presented. In order to achieve the highest overall efficiency of an FFPA, an improved pre-distortion diode linearizer has been used and the bias condition of the main amplifier has been optimized. The optimum bias condition has been derived from the overall efficiency analysis of the FFPA with a pre-distortion linearizer. From measured overall performances of the FFPA, efficiency enhancement of the series diode linearizer has been verified. The developed FFPA achieved the efficiency of 10% and output power of 45.6 dBm at 10 MHz offset Adjacent Channel leakage Power Ratio (ACPR) -50 dBc under Wide-band Code-Division Multiple-Access (W-CDMA) modulated 2 carriers signal. This design method can be also used to optimize the source and load impedances condition of the main amplifier FET.
Recent cellular systems have excellent performances, such as high quality, compactness, low power consumption and low cost, owing not only to digital technologies but also to various RF device technologies, especially amplifier technologies. This paper describes base station RF technologies that contributed for the improvement of base station equipment. Future mobile system will provide much higher bitrate services in the higher frequency band. Requirements and new technologies that are expected for RF equipment of the future base stations are also discussed.
Jie ZHOU Yoshikuni ONOZATO Hisakazu KIKUCHI
In CDMA systems, power control strategy is the most important issue since the capacity of the system is only interference-limited. For a better understanding of the effects of Forward Link Power Control Strategy (FLPCS) on the outage probability in fading environments, this paper has presented a theoretical analysis of forward link in a CDMA cellular system by introducing the τ-th power of distance driven control strategy. Based on the power control, the capacity and outage probability of the system are estimated and discussed. In particular, we consider the impact of fading environments and investigate the "hole" phenomenon. Based on our numerical results, the "hole" points are at the upper bounds of where it is possible to ensure minimization of the maximum value of total Interference-to-Signal Ratio (ISR). At those upper bound points, at least, the power control strategy leads to approximately threefold the capacity compared to the case without power control strategy. It can be concluded that the forward link without power control strategy is a very heavy restriction for the capacity of the CDMA system, especially in environments of significant fading.
Kozo SAKAWA Hironari MASUI Masanori ISHII Hiroyuki SHIMIZU Takehiko KOBAYASHI
We have measured the non line-of-sight (NLOS) propagation characteristics of microwave frequencies in an urban environment with a base station antenna situated well above the surrounding buildings. When these characteristics are compared with the results of measurements made in the same environment with a low base station antenna height, it can be seen that with a low base station antenna height the attenuation coefficient varies greatly between line-of-sight (LOS) and NLOS environments, whereas with a high base station antenna height there is no variation of this sort. This is because the waves arriving NLOS environments from a high base station antenna do so primarily as a result of rooftop diffraction, and the path loss does not vary much over regions of equal distance between the base station and mobile station. We have confirmed that the frequency characteristics of relative loss in NLOS environments with a high antenna height follow a relationship of 22.8 log f, which is more or less the same as the characteristic for the UHF band. By modifying the frequency terms of the Sakagami model (used for UHF band) based on this trend to allow it to handle microwave frequencies, a close correspondence is seen between the results of actual measurements and the values predicted by the extended model.